3.3 বাইনারি যোগ বিয়োগ (Addition and Subtraction in Binary System)

বাইনারি সংখ্যা আমাদের পরিচিত দশমিক সংখ্যার মতোই একটি সংখ্যা পদ্ধতি। পার্থক্যটুকু হচ্ছে যে দশমিক সংখ্যা পদ্ধতিতে ভিত্তি 10 এবং বাইনারিতে ভিত্তি 2। কাজেই দশমিক সংখ্যা পদ্ধতিতে আমরা যেভাবে যোগ এবং বিয়োগ করতে পারি, বাইনারি পদ্ধতিতেও হুবহু সেভাবে যোগ এবং বিয়োগ করতে পারব। যেমন:

তবে যেহেতু বাইনারি সংখ্যার সবচেয়ে বড় ব্যবহার ডিজিটাল ইলেকট্রনিক্সে, তাই বাইনারি যোগ এবং বিয়োগের প্রয়োগের জন্য আলাদা কিছু পদ্ধতি ব্যবহার করা হয়। সাধারণ সংখ্যা যোগ-বিয়োগের বেলায় আমাদের কখনোই আমরা কত অঙ্কের সংখ্যা যোগ কিংবা বিয়োগ করছি সেটি আগে থেকে জানার প্রয়োজন হয় না। কিন্তু ইলেকট্রনিক সার্কিট ব্যবহার করে বাইনারি যোগ-বিয়োগ করার সময় কত অঙ্কের সংখ্যা যোগ করছি আগে থেকে জানতে হয়। কারণ সার্কিটটি যতগুলো বিট ধারণ করতে পারবে সংখ্যাটিতে তার থেকে বেশি সংখ্যক অঙ্ক থাকলে সেটি ব্যবহার করা যায় না। শুধু তাই নয় যোগ করার পর বিটের নির্ধারিত সংখ্যা থেকে বিটের সংখ্যা বেড়ে গেলে সেটিও সঠিকভাবে ফলাফল দেবে না। ডিজিটাল ইলেকট্রনিক্সে যেহেতু দুটি ভিন্ন ভিন্ন ভোল্টেজ দিয়ে বাইনারি 0 এবং 1 অঙ্ক দুটি দিয়ে প্রকাশ করা হয়, তাই যাবতীয় গাণিতিক অঙ্কও এই অঙ্ক দুটো দিয়েই প্রকাশ করতে হবে।

অনেকে মনে করতে পারে ডিজিটাল ইলেকট্রনিক্স করার জন্য বাইনারি সংখ্যা দিয়ে যোগ, বিয়োগ, গুণ এবং ভাগ এই প্রত্যেকটি প্রক্রিয়াই করার ব্যবস্থা থাকতে হয়। আসলে একটি সংখ্যাকে নেগেটিভ করা এবং যোগ করার সার্কিট থাকলেই অন্য সব গাণিতিক প্রক্রিয়া করা যায়। কোনো একটি সংখ্যা বিয়োগ করতে হলে সংখ্যাটিকে নেগেটিভ করে যোগ করতে হবে। সংখ্যা দিয়ে গুণ করার পরিবর্তে সেই নির্দিষ্ট সংখ্যক বার যোগ করলেই হয়। বার বার বিয়োগ করে ভাগের কাজ চালিয়ে নেয়া যায়। তাই আমরা দেখব একটি সংখ্যাকে নেগেটিভ করার একটি সুনির্দিষ্ট পদ্ধতি জানা থাকলে শুধু যোগ করার সার্কিট দিয়ে আমরা বিয়োগ, গুণ এবং ভাগও করতে পারব।